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Abstract

We prove a rigid analytic analogue of the Artin-Grothendieck vanishing theorem. Pre-
cisely, we prove (under mild hypotheses) that the geometric étale cohomology of any Zariski-
constructible sheaf on any affinoid rigid space X vanishes in all degrees above the dimension of
X. Along the way, we show that branched covers of normal rigid spaces can often be extended
across closed analytic subsets, in analogy with a classical result for complex analytic spaces.
We also prove some new comparison theorems relating the étale cohomology of schemes and
rigid analytic varieties, and give some applications of them. In particular, we prove a structure
theorem for Zariski-constructible sheaves on characteristic zero affinoid spaces.
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1 Introduction
This paper touches on several topics in the étale cohomology of non-archimedean analytic spaces.
On the one hand, we prove an analogue of the Artin-Grothendieck vanishing theorem.1 This involves
the class of so-called Zariski-constructible étale sheaves on rigid analytic spaces, which we define
and study in this paper. On the other hand, as part of this study, we prove some new comparison
theorems for étale cohomology, both for affinoid rings and for schemes over affinoid rings. Using
these comparison results, we prove a strong structure theorem for Zariski-constructible sheaves on
characteristic zero affinoid rigid spaces, and show that Zariski-constructibility is preserved under
certain of the six functor operations.

1.1 Artin-Grothendieck vanishing
Let X ⊂ Cm be a smooth affine variety over C, or more generally any complex Stein manifold.
According to a classical theorem of Andreotti and Frankel [AF59], X has the homotopy type of a
CW complex of real dimension ≤ dimX. In particular, the cohomology groups H

i
(X,A) vanish for

any abelian group A and any i > dimX. This vanishing theorem was significantly generalized by
Artin and Grothendieck, who proved the following striking result.

Theorem 1.1 (Corollaire XIV.3.2 in [SGA73]). Let X be an affine variety over a separably closed
field k, and let F be any torsion abelian sheaf on the étale site of X. Then

H
i
ét(X,F ) = 0

for all i > dimX.

We remind the reader that for a general k-variety X, the groups H
i
ét(X,F ) vanish in degrees

i > 2 dimX, and this bound is sharp.
It’s natural to wonder whether there is a rigid analytic analogue of the Artin-Grothendieck

vanishing theorem. Again, we have a general sharp vanishing theorem due to Berkovich and Huber
(cf. [Ber93, Corollary 4.2.6], [Hub96, Corollary 2.8.3]): for any quasicompact and quasiseparated2

rigid space X over a complete algebraically closed nonarchimedean field C, and any torsion abelian
sheaf F on Xét, the cohomology group H

i
ét(X,F ) vanishes for all i > 2 dimX. Now in rigid

geometry the affinoid spaces play the role of basic affine objects, and the most naive guess for an
analogue of Artin-Grothendieck vanishing would be that H

i
ét(X,F ) vanishes for all affinoids X/C,

all torsion abelian sheaves F on Xét and all i > dimX.
Unfortunately, after some experimentation, one discovers that this fails miserably: there are

plenty of torsion abelian sheaves on the étale site of any d-dimensional affinoid with nonzero co-
homology in all degrees i ∈ [0, 2d]. However, the following conjecture seems to be a reasonable
salvage.

Conjecture 1.2. Let X be an affinoid rigid space over a complete algebraically closed nonar-
chimedean field C, and let G be any Zariski-constructible sheaf of Z/nZ-modules on Xét for some
n prime to the residue characteristic of C. Then

H
i
ét(X,G ) = 0

1This result is often attributed to Artin alone. However, Artin suggested in a private communication that it should
properly be attributed as joint work with Grothendieck.

2(More generally, one can allow any quasiseparated rigid space admitting a covering by countably many quasi-
compact open subsets.)
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for all i > dimX.

Here for a given rigid space X and Noetherian coefficient ring Λ, we say a sheaf G of Λ-modules
on Xét is Zariski-constructible if X admits a locally finite stratification into subspaces Zi ⊂ X,
each locally closed for the Zariski topology on X, such that G |Zi,ét is a locally constant sheaf of
Λ-modules of finite type for each i. We denote the category of such sheaves by Shzc(X,Λ). We
will see that Shzc(X,Λ) is a thick abelian subcategory of the category Sh(X,Λ) of all sheaves of
Λ-modules on Xét. In the derived setting, we say that A ∈ D(X,Λ) is Zariski-constructible if it has
Zariski-constructible cohomology sheaves; such objects form a saturated triangulated subcategory
Dzc(X,Λ). Note that Zariski-constructible sheaves are overconvergent, and so it is immaterial
whether one interprets their étale cohomology in the framework of Berkovich spaces or adic spaces
(cf. [Hub96, Theorem 8.3.5]).

The first main result of this paper confirms Conjecture 1.2 in the case where C has characteristic
zero and the pair (X,G ) arises via base extension from a discretely valued nonarchimedean field.

Theorem 1.3. Let X be an affinoid rigid space over a complete discretely valued nonarchimedean
field K of characteristic zero, and let F be any Zariski-constructible sheaf of Z/nZ-modules on Xét

for some n prime to the residue characteristic of K. Then the cohomology groups H
i
ét(X bK

,F ) are
finite for all i, and

H
i
ét(X bK

,F ) = 0

for all i > dimX.

For a slightly more general result, see Corollary 3.4. As far as we know, this is the first progress
on Conjecture 1.2 since Berkovich [Ber96] treated some cases where F = Z/nZ is constant and X

is assumed algebraizable in a certain sense. In particular, using a deep algebraization theorem of
Elkik [Elk73, Théorème 7], Berkovich proved Conjecture 1.2 when F is constant and X is smooth,
which might give one some confidence in the general conjecture.

Our proof of Theorem 1.3 doesn’t explicitly use any algebraization techniques. Instead, we
reduce to the special case where F is constant. In this situation, it turns out we can argue directly,
with fewer assumptions on K:

Theorem 1.4. Let X be an affinoid rigid space over a complete discretely valued nonarchimedean
field K. Then

H
i
ét(X bK

,Z/nZ) = 0

for all i > dimX and all n prime to the residue characteristic of K.

The proof of this theorem uses a number of ingredients, including some theorems of Greco
and Valabrega on excellent rings, a remarkable formula of Huber for the stalks of the nearby cycle
sheaves R

q
λ∗(Z/nZ) on Spec(A

◦
/�)et, a special case of Gabber’s delicate “affine Lefschetz theorem”

for quasi-excellent schemes, and the classical Artin-Grothendieck vanishing theorem.
The reduction step involves an ingredient which seems interesting in its own right. To explain

this, we make the following definition.

Definition 1.5. Let X be a normal rigid space. A cover of X is a finite surjective map π : Y → X

from a normal rigid space Y , such that there exists some closed nowhere-dense analytic subset
Z ⊂ X with π

−1
(Z) nowhere-dense and such that Y � π

−1
(Z) → X � Z is finite étale.

We then have the following result, which seems to be new.
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Theorem 1.6. Let X be a normal rigid space over a complete nonarchimedean field K, and let
Z ⊂ X be any closed nowhere-dense analytic subset. Then the restriction functor

�
covers of X

étale overX � Z

�
→

�
finite étale covers

of X � Z

�

Y �→ Y ×X (X � Z)

is fully faithful. Moreover, if K has characteristic zero, it is an equivalence of categories; in other
words, any finite étale cover of X � Z extends uniquely to a cover of X.

We remind the reader that in the schemes setting, the analogue of the equivalence in Theorem
1.6 is an easy exercise in taking normalizations, and holds essentially whenever the base scheme X

is Nagata, while for complex analytic spaces the problem was solved by Stein and Grauert-Remmert
in the 50’s, cf. [DG94].

Let us say something about the proof. Full faithfulness is an easy consequence of Bartenwerfer’s
rigid analytic version of Riemann’s Hebbarkeitssatz, which says that bounded functions on normal
rigid spaces extend uniquely across nowhere-dense closed analytic subsets. Essential surjectivity
in characteristic zero is more subtle; indeed, it provably fails in positive characteristic. When X

is smooth and Z is a strict normal crossings divisor, however, essential surjectivity was proved by
Lütkebohmert in his work [Lüt93] on Riemann’s existence problem.3 We reduce the general case
to Lütkebohmert’s result using recent work of Temkin on embedded resolution of singularities for
quasi-excellent schemes in characteristic zero.

We also note that our argument for the reduction of Theorem 1.3 to Theorem 1.4 reduces
Conjecture 1.2 to the special case where F is constant, at least for C of characteristic zero. With
Theorem 1.4 in hand, this might put the general characteristic zero case of Conjecture 1.2 within
reach of some approximation argument.

1.2 Comparison theorems and applications
The next main result in this paper is the following theorem, which gives some further justification
for the definition of Zariski-constructible sheaves.

Theorem 1.7. Let S = SpaA be an affinoid rigid space over some characteristic zero nonar-
chimedean field K, and write S = Spec A, so there is a natural map of sites µS : Sét → Sét. Let
Λ be a Noetherian coefficient ring killed by some positive integer, such that either #Λ is finite or
the residue charactistic of K is invertible in Λ. Let Shc(S,Λ) denote the category of constructible
sheaves of Λ-modules on Sét.

Then the functor
µ
∗
S : Shc(S,Λ) → Shzc(S, Λ)

is an equivalence of categories.

Note that we still expect full faithfulness in positive characteristic, but essential surjectivity
definitely fails. For an explicit counterexample, take K = Fp((t)) and S = SpaK �T �. Write
j : S

×
= S � {T = 0} → S for the inclusion of the punctured disk. Then (for any Λ) there exists

a locally constant constructible sheaf F on S
× such that j!F is not in the essential image of µ

∗
S :

precisely, one can choose an Artin-Schreier cover π : U → S
× defined by an equation T

p−T − f for
3Although curiously, Lütkebohmert doesn’t explicitly state the result in his paper, nor does he discuss full faith-

fulness.
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some well-chosen f ∈ O(S
×

), such that F = π∗Λ gives an example of the desired shape. The point
is to choose an f which has an especially bad essential singularity at T = 0. This counterexample
is closely related to the failure of Theorem 1.6 in positive characteristic.

Although intuitively reasonable, Theorem 1.7 is definitely not trivial to prove. The main tools
in the proof are Theorem 1.6 together with two new comparison theorems for étale cohomology.
To state the latter results, fix an affinoid S = SpaA over some nonarchimedean field K, and let
S = SpecA and µS be as above. Recall that for any locally finite type S-scheme X , there is a
functorially associated rigid space X = X an over S together with a morphism X → X of locally
ringed spaces characterized by a simple universal property, and again there is a functorial map of
sites µX : Xét → Xét. We then have the following relative comparison theorem.

Theorem 1.8 (Relative comparison theorem). Assume that char(K) = 0, and let f : X → Y be a
finite type morphism between S-schemes locally of finite type, with analytification f

an
: X → Y . Let

Λ be a Noetherian coefficient ring killed by some positive integer, such that either #Λ is finite or the
residue charactistic of K is invertible in Λ. Then for any F ∈ D

+
c (X ,Λ), the natural comparison

map
µ
∗
Y Rf∗F → Rf

an
∗ µ

∗
XF

is an isomorphism in D(Y,Λ).

In the special cases where f is proper or S = Spec K is a point, this was proved by Berkovich
and Huber in the 90s ([Ber93, Corollaries 7.1.4 and 7.5.4], [Hub96, Theorems 3.7.2 and 3.8.1]).

On the other hand, we also prove an “absolute” comparison theorem for affinoid adic spaces.

Theorem 1.9 (Affinoid comparison theorem). Let (A, A
+
) be any strongly Noetherian Tate-Huber

pair, with S = Spa(A, A
+
) the associated affinoid adic space. Write S = Spec A, so there is a map of

sites µS : Sét → Sét as above. Then for any torsion abelian sheaf F on Sét, the natural comparison
map

H
n
ét(S,F ) → H

n
ét(S, µ

∗
SF )

is an isomorphism for all n.

When F is a constant sheaf, this is proved in Huber’s book, and one might hope to reduce to
this case by a trick. This turns out to be surprisingly easy.

The proof of Theorem 1.8 is somewhat more involved. The rough idea is to reduce the general case
by a series of dévissages to the very special case where Y is regular, f is a dense open immersion, and
F = M is a constant constructible sheaf of Λ-modules. This special case is handled by a completely
straightforward adaptation of the final stages in the proof of [SGA73, Th. XVI.4.1], making crucial
use of a cohomological purity theorem due to Huber; the latter theorem is where the conditions on
Λ in Theorem 1.8 arise. The reduction steps use a number of ingredients, including Temkin’s results
on resolution of singularities, Gabber’s results on the étale cohomology of quasi-excellent schemes,
and the truth of Theorem 1.8 for proper f . We note that Huber already suggested in his book that
Theorem 1.8 should be true and provable along these lines, cf. [Hub96, p. 162].

Putting these comparison theorems together, we get the following very useful result.

Theorem 1.10. Let S = Spec A be the spectrum of a characteristic zero affinoid, and let f : X → S
be an S-scheme of finite type with analytification f

an
: X → S = SpaA. Let Λ be a Noetherian

coefficient ring killed by some positive integer, such that either #Λ is finite or the residue charactistic
of K is invertible in Λ. Then

i. For any F ∈ D
+
c (X ,Λ), the natural map RΓ(X , F ) → RΓ(X,µ

∗
XF ) is an isomorphism.

Moreover, the natural adjunction map F → RµX∗µ
∗
XF is an isomorphism.
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ii. The functor µ
∗
X : D

b
c(X ,Λ) → D(X,Λ) is fully faithful. More generally, there is a natural

isomorphism
HomD(X,Λ)(µ

∗
XG, µ

∗
XF ) ∼= HomD(X ,Λ)(G, F )

for any F ∈ D
+
c (X ,Λ) and G ∈ D

−
(X ,Λ).

Note that even if X = S, the proof of Theorem 1.10 requires the full power of the relative
comparison theorem, since one needs to compare the étale cohomology of U and Uan for an arbitrary
quasi-compact étale map U → S, in which case Uan is typically never affinoid. This was our original
motivation for proving the relative comparison theorem.

Finally, we take some first steps towards showing that Zariski-constructibility interacts well with
the six operations in the étale cohomology of rigid spaces. We caution the reader that unless f is
proper, the functors Rf∗ and Rf! typically destroy Zariski-constructibility, even if f is the inclusion
of a Zariski-open subset. However, we expect that this is more or less the only thing that goes
wrong.

Theorem 1.11. Let S be a characteristic zero affinoid space over a nonarchimedean field K, and
set Λ = Z/nZ for some n > 1 with n prime to the residue characteristic of K. Let g : S → SpaK

be the structure map, and let ωS = Rg
!
Λ be the dualizing complex. In iii.-v. below, assume that

Gal(K/K) has finite Λ-cohomological dimension. Then
i. If j : U → S is the inclusion of a Zariski-open subspace and F ∈ Sh(U,Λ) is locally constant

constructible, then Rj∗F is Zariski-constructible.
ii. If F ,G ∈ D

−
(S, Λ) are Zariski-constructible, then so is F ⊗L

Λ G .
iii. The Verdier duality functor

DS(−) = RH omS(−, ωS)

sends D
±

(S,Λ) into D
∓

(S,Λ), and if F ∈ D(S,Λ) is Zariski-constructible, then the Verdier
dual DSF is Zariski-constructible as well. In particular, the dualizing complex ωS is Zariski-
constructible. Moreover, if F ∈ D(S,Λ) is Zariski-constructible, then it is reflexive: the natural
biduality map F → DSDSF is an isomorphism.

iv. If F ∈ D
−

(S,Λ) and G ∈ D
+
(S, Λ) are Zariski-constructible, then so is RH omS(F ,G ).

v. If f : T → S is any map of affinoid rigid spaces and F ∈ D(S, Λ) is Zariski-constructible,
then so is Rf

!F .

The irritating restriction to affinoid spaces here would disappear if one could settle the following
fundamental problem.

Conjecture 1.12. Zariski-constructibility is an étale-local property. More precisely, if f : Y → X

is any surjective étale map of rigid spaces and F ∈ Sh(X,Λ) is any étale sheaf such that f
∗F is

Zariski-constructible, then F is Zariski-constructible.

We note that Huber has also defined a notion of Zariski-constructible sheaves on rigid spaces:
a sheaf is Zariski-constructible in his sense if it is étale-locally Zariski-constructible in our sense.
In particular, Conjecture 1.12 implies that Huber’s definition coincides with ours. Conjecture 1.12
also implies (upon combining it with Theorem 1.7) that sheaves which are Zariski-constructible in
our sense coincide with the constructible sheaves defined by Berkovich in [Ber15, §1], at least in
characteristic zero.

Conjecture 1.12 can be deduced from the following conjecture, which looks very plausible.
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Conjecture 1.13. Let F ∈ Sh(X,Λ) be a Zariski-constructible sheaf on an affinoid rigid space
X, and let UX(F ) denote the largest open subset U ⊂ X such that F |U is locally constant. Then
UX(F ) ⊂ X is Zariski-open.

We end this introduction with one more tantalizing problem, which seems to really require a
new idea.

Conjecture 1.14. Let f : X → Y be a proper morphism of rigid spaces. If F ∈ D
+
(X,Λ) is

Zariski-constructible, then so is Rf∗F .

Remarks on terminology and conventions.

Our convention is that a “nonarchimedean field” is a topological field whose topology is defined by a
nontrivial nonarchimedean valuation of rank one. If K is any nonarchimedean field, we regard rigid
analytic spaces over K as a full subcategory of the category of adic spaces locally of topologically
finite type over Spa(K, K

◦
). If A is any topological ring, we write A

◦ for the subset of power-
bounded elements; if A is a Huber ring, we write Spa A for Spa(A, A

◦
). Unless explicitly stated

otherwise, all sheaves are étale sheaves, all derived categories are derived categories of étale sheaves,
all cohomology groups are étale cohomology groups, etc.

We use the terms “Zariski-closed subset” and “closed analytic subset” interchangeably, and we
always regard Zariski-closed subsets of rigid spaces as rigid spaces via the induced reduced structure.
Finally, we remind the reader that in rigid geometry the phrases “dense Zariski-open subset” and
“Zariski-dense open subset” have very different meanings.
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2 Preliminaries

2.1 Zariski-constructible sheaves on rigid spaces
In this section we discuss some basics on Zariski-constructible étale sheaves on rigid spaces. For
simplicity we fix a nonachimedean field K and a Noetherian coefficient ring Λ; until further notice,
roman letters X,Y, ... denote rigid spaces over K, and “Zariski-constructible” means a Zariski-
constructible sheaf of Λ-modules, as defined in the introduction, on the étale site of some rigid space
X over K.

Proposition 2.1. Let F be a Zariski-constructible sheaf on a rigid space X.
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i. If f : Y → X is any morphism of rigid spaces, then f
∗F is Zariski-constructible.

ii. If i : X → W is a closed immersion, then i∗F is Zariski-constructible.
iii. If j : X → V is a Zariski-open immersion and F is locally constant, then j!F is Zariski-

constructible.

Proof. Trivial.

We will often verify Zariski-constructibility via the following dévissage, which is a trivial conse-
quence of the previous proposition.

Proposition 2.2. Let X be any rigid space, and let F be a sheaf of Λ-modules on Xét. The
following are equivalent:

i. F is Zariski-constructible.
ii. There is some dense Zariski-open subset j : U → X with closed complement i : Z → X such

that i
∗F is Zariski-constructible and j

∗F is locally constant of finite type.

Note that one cannot weaken the hypotheses in ii. here to the condition that j
∗F is Zariski-

constructible; this is related to the fact that the Zariski topology in the rigid analytic world is not
transitive.

Proposition 2.3. If f : X
� → X is a finite morphism and F is a Zariski-constructible sheaf on

X
�, then f∗F is Zariski-constructible.

We note in passing that if f : X → Y is a finite morphism, or more generally any quasi-compact
separated morphism with finite fibers, then f∗ : Sh(Xét,Λ) → Sh(Yét,Λ) is an exact functor, cf.
Proposition 2.6.4 and Lemma 1.5.2 in [Hub96].

Proof. We treat the case where X
�
= SpaA

� and X = SpaA are affinoid, which is all we’ll need later.
We can assume they are reduced and that f is surjective. If i : Z → X is Zariski-closed and nowhere
dense, then dimZ < dimX; setting Z

�
= Z ×X X

� and writing f
�
: Z

� → Z and i
�
: Z

� → X
� for the

evident morphisms, we can assume that i
∗
f∗F ∼= f

�
∗i
�∗F is Zariski-constructible by induction on

dimX. By dévissage, it now suffices to find a dense Zariski-open subset j : U → X such that j
∗
f∗F

is locally constant. To do this, choose a dense Zariski-open subset V ⊂ X
� such that F |V is locally

constant. Then W = X � f(X
� � V ) is a dense Zariski-open subset of X, and F is locally constant

after pullback along the open immersion W
�
= W ×X X

� → X
�. If char(K) = 0, we now conclude

by taking U to be any dense Zariski-open subset contained in W such that U
�
= U ×X X

� → U is
finite étale; if char(K) = p, we instead choose U so that U

� → U factors as the composition of a
universal homeomorphism followed by a finite étale map. (For the existence of such a U , look at the
map of schemes Spec A

� → Spec A; this morphism has the desired structure over all generic points
of the target, and these structures then spread out over a dense Zariski-open subset of Spec A. One
then concludes by analytifying.)

Proposition 2.4. Let X be a rigid space.
i. Let 0 → F → G → H → 0 be a short exact sequence of étale sheaves of Λ-modules on X. If

two of the three sheaves {F ,G ,H } are Zariski-constructible, then so is the third.
ii. Let f : F → G be any map of Zariski-constructible sheaves. Then ker f , imf and cokerf are

Zariski-constructible.
iii. Let F → G → H

[1]→ be a distinguished triangle in D(X,Λ). If two of the three objects F,G, H

are Zariski-constructible, then so is the third.
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We often refer to parts i. and iii. as the “two-out-of-three property”.

Proof. For i., by induction on dimX and dévissage, it suffices to find some dense Zariski-open subset
j : U → X such that all three sheaves are locally constant after restriction to U . By assumption, we
can choose U such that two of the three sheaves have this property. Looking at the exact sequence
0 → F |U → G |U → H |U → 0, [Hub96, Lemma 2.7.3] implies that all three sheaves are constructible
(in the sense of [Hub96]). By [Hub96, Lemma 2.7.11], it now suffices to check that all three sheaves
are overconvergent. But if x � y is any specialization of geometric points, this follows immediately
by applying the snake lemma to the diagram

0 �� Fy ��

��

Gy ��

��

Hy ��

��

0

0 �� Fx
�� Gx

�� Hx
�� 0

since by assumption two of the three vertical arrows are isomorphisms.
For ii., we first show that cokerf is Zariski-constructible. As in the argument for i., it suffices

to find some dense Zariski-open subset j : U → X such that coker f |U is locally constant. Choose
U such that F |U and G |U are locally constant, so cokerf |U is constructible. Then for x � y any
specialization of geometric points of U , the first two vertical maps in the diagram

Fy ��

��

Gy ��

��

(cokerf)y
��

��

0

Fx
�� Gx

�� (cokerf)x
�� 0

are isomorphisms by assumption, so the map (cokerf)y → (cokerf)x is an isomorphism by the
five lemma. Thus cokerf |U is overconvergent and constructible, hence locally constant by [Hub96,
Lemma 2.7.11].

The remaining parts of ii. now follow from the exact sequences 0 → imf → G → cokerf → 0

and 0 → ker f → F → imf → 0 by successive applications of i.
For iii., we can assume (possibly after a shift) that F and H are Zariski-constructible. The result

then follows from parts i. and ii., by looking at the exact sequences

0 → coker
�
H

n−1
(H) → H

n
(F )

�
→ H

n
(G) → ker

�
H

n
(H) → H

n+1
(F )

�
→ 0.

Corollary 2.5. For any rigid space X, Shzc(X,Λ) is a thick abelian subcategory of Sh(X,Λ).

2.2 Extending covers across closed subsets
In this section we prove a slight strengthening of Theorem 1.6. We’ll freely use basic facts about
irreducible components of rigid spaces, as developed in [Con99], without any comment. The following
result of Bartenwerfer [Bar76, §3] is also crucial for our purposes.

Theorem 2.6 (Bartenwerfer). Let X be a normal rigid space, and let Z ⊂ X be a nowhere-
dense closed analytic subset, with j : X � Z → X the inclusion of the open complement. Then
O+

X
∼→ j∗O+

X�Z and OX
∼→

�
j∗O+

X�Z

�
[

1
� ]. In particular, if X is affinoid and f ∈ OX(X � Z) is

bounded, then f extends uniquely to an element of OX(X), so OX(X) ∼= O+
X(X � Z)[

1
� ].
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Corollary 2.7. If X is a connected normal rigid space and Z ⊂ X is a nowhere-dense closed
analytic subset, then X � Z is connected.

Proof. Any idempotent in OX(X � Z) is power-bounded, so this is immediate from the previous
theorem.

Proposition 2.8. Let X be a normal rigid space, and let π : Y → X be a cover of X. Then each
irreducible component of Y maps surjectively onto some irreducible component of X. Moreover, if
V ⊂ X is any closed nowhere-dense analytic subset, then π

−1
(V ) is nowhere-dense.

Proof. We immediately reduce to the case where X is connected. Let Z ⊂ X be as in the definition
of a cover, and let Yi be any connected component of Y , so then Yi ∩π

−1
(Z) is closed and nowhere-

dense in Yi and Yi � Yi ∩ π
−1

(Z) → X � Z is finite étale. Then

im
�
Yi � Yi ∩ π

−1
(Z) → X � Z

�

is a nonempty open and closed subset of X �Z, so it coincides with X �Z by the previous corollary.
In particular, π(Yi) contains a dense subset of X. On the other hand, π(Yi) is a closed analytic
subset of X since π is finite. Therefore π(Yi) = X.

For the second claim, note that if V is a closed analytic subset of a connected normal space X,
then V � X if and only if V is nowhere-dense if and only if dimV < dimX. Since

dimπ
−1

(V ) ∩ Yi = dimV < dimX = dimYi

for any irreducible component Yi of Y , this gives the claim.

Proposition 2.9. Let X be a normal rigid space, and let Z ⊂ X be any closed nowhere-dense
analytic subset. Then the restriction functor

�
covers of X

�
→

�
covers of X � Z

�

Y �→ Y ×X (X � Z)

is fully faithful.

Proof. If π : Y → X is any cover and U ⊂ X is any open affinoid, then π
−1

(U) is affinoid as
well, and π

−1
(Z ∩ U) is nowhere-dense in U by the previous proposition. But then OY (π

−1
(U)) ∼=

O+
Y (π

−1
(U�U∩Z))[

1
� ] by Theorem 2.6, so OY (U) only depends on Y ×X (X�Z). This immediately

gives the result.

It remains to prove the following result.

Theorem 2.10. Let X be a normal rigid space over a characteristic zero complete nonarchimedean
field K, and let Z ⊂ X be any closed nowhere-dense analytic subset. Then the restriction functor

�
covers of X

étale overX � Z

�
→

�
finite étale covers

of X � Z

�

Y �→ Y ×X (X � Z)

is essentially surjective.
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In other words, given a (surjective) finite étale cover π : Y → X � Z, we need to find a cover
π̃ : Ỹ → X and an open immersion Y → Ỹ such that the diagram

Y ��

π

��

Ỹ

π̃

��
X � Z �� X

is cartesian. We refer to this as the problem of extending Y to a cover of X. Note that by the full
faithfulness proved above, we’re always free to work locally on X when extending a given cover of
X � Z.

Until further notice, fix K of characteristic zero. The key special case is the following result.

Theorem 2.11 (Lütkebohmert). If X is a smooth rigid space and D ⊂ X is a strict normal
crossings divisor, then any finite étale cover of X � D extends to a cover of X.

This is more or less an immediate consequence of the arguments in §3 in Lütkebohmert’s paper
[Lüt93] (and is implicit in the proof of Theorem 3.1 of loc. cit.). For the convenience of the reader,
we explain the deduction in detail. Let Br

= SpaK �X1, . . . ,Xr� denotes the r-dimensional closed
affinoid ball.

Lemma 2.12 (Lemma 3.3 in [Lüt93]). Let S be a smooth K-affinoid space, and let r ≥ 1 be any
integer. If Y0 is a cover of S × (Br � V (X1, . . . ,Xr)) which is étale over S × (Br � V (X1 · · ·Xr)),
then Y0 extends to a cover Ỹ of S ×Br.

We also need a result of Kiehl on the existence of “tubular neighborhoods” of strict normal
crossings divisors in smooth rigid spaces.

Lemma 2.13. If D ⊂ X is a strict normal crossings divisor in a smooth rigid space, then for
any (adic) point x in X contained in exactly r irreducible components D1, . . . ,Dr of D, we can find
some small open affinoid U ⊂ X containing x together with a smooth affinoid S and an isomorphism
U � S ×Br, under which the individual components Di ∩U containing x identify with the zero loci
of the coordinate functions Xi ∈ O(Br

).

Proof. This follows from a careful reading of Theorem 1.18 in [Kie67b] (cf. also [Mit, Theorem
2.11]).

Granted these results, we deduce Theorem 2.11 as follows. By full faithfulness we can assume
that X is quasicompact, or even affinoid. We now argue by induction on the maximal number ι(D)

of irreducible components of D passing through any individual point of X. If ι(D) = 1, then D

is smooth, so arguing locally around any point in D, Lemma 2.13 puts us exactly in the situation
covered by the case r = 1 of Lemma 2.12. If ι(D) = n, then locally on X we can assume that D

has (at most) n smooth components D1, D2, . . . ,Dn. By the induction hypothesis, any finite étale
cover Y of X � D extends to a cover Yi of X � Di for each 1 ≤ i ≤ n, since ι(D � Di) ≤ n− 1 for
D � Di viewed as a strict normal crossings divisor in X � Di. By full faithfulness the Yi’s glue to
a cover Y0 of X � ∩1≤i≤nDi, and locally around any point in ∩1≤i≤nDi Lemma 2.13 again puts us
in the situation handled by Lemma 2.12, so Y0 extends to a cover Ỹ of X, as desired.

Proof of Theorem 2.10. We can assume that X = SpaA is an affinoid rigid space, so Z = SpaB is
also affinoid, and we get a corresponding closed immersion of schemes Z = SpecB → X = SpecA.
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These are quasi-excellent schemes over Q, so according to Theorem 1.11 in [Tem17], we can find a
projective birational morphism f : X � → X such that X � is regular and f

−1
(Z)

red is a strict normal
crossings divisor, and such that f is an isomorphism away from Z ∪ X sing. Analytifying, we get a
proper morphism of rigid spaces g : X

� → X with X
� smooth such that g

−1
(Z)

red is a strict normal
crossings divisor.

Suppose now that we’re given a finite étale cover Y → X � Z. Base changing along g, we
get a finite étale cover of X

� � g
−1

(Z), which then extends to a cover h : Y
� → X

� by Theorem
2.11. Now, since g ◦ h is proper, the sheaf (g ◦ h)∗OY � defines a sheaf of coherent OX -algebras by
[Kie67a]. Taking the normalization of the affinoid space associated with the global sections of this
sheaf, we get a normal affinoid Y

�� together with a finite map Y
�� → X and a canonical isomorphism

Y
��|(X�Z)sm

∼= Y |(X�Z)sm . The cover Ỹ → X we seek can then be defined as the Zariski closure of
Y
��|(X�Z)sm in Y

��; note that this is just a union of irreducible components of Y
��, so it’s still normal,

and it’s easy to check that Ỹ is a cover of X. Finally, since Ỹ and Y are canonically isomorphic
after restriction to (X � Z)

sm, the full faithfulness argument shows that this isomorphism extends
to an isomorphism Ỹ |X�Z

∼= Y , since (X � Z)
sm is a dense Zariski-open subset of X � Z. This

concludes the proof.

For completeness, we state the following mild generalization of Theorem 2.10.

Theorem 2.14. Let X be a normal rigid space over a characteristic zero complete nonarchimedean
field K, and let V ⊂ X be any closed nowhere-dense analytic subset. Suppose that Y → X � V is a
cover, and that there is some closed nowhere-dense analytic set W ⊂ X � V such that V ∪W is an
analytic set in X and such that

Y ×(X�V ) (X � V ∪W ) → X � V ∪W

is finite étale. Then Y extends to a cover Ỹ → X.

Proof. Apply Theorem 2.10 with Z = V ∪W to construct Ỹ → X extending

Y ×(X�V ) (X � V ∪W ) → X � V ∪W,

and then use full faithfulness to deduce that Ỹ |X�V
∼= Y .

Combining this extension theorem with classical Zariski-Nagata purity, we get a purity theorem
for rigid analytic spaces.

Corollary 2.15. Let X be a smooth rigid analytic space over a characteristic zero complete nonar-
chimedean field, and let Z ⊂ X be any closed analytic subset which is everywhere of codimension
≥ 2. Then finite étale covers of X are equivalent to finite étale covers of X � Z.

We also get the following equivalence, which plays an important role in the proof of Theorem
1.7.

Corollary 2.16. Let S = SpaA be a characteristic zero affinoid. Set S = SpecA, and let U ⊂ S
be any normal dense open subscheme, with U ⊂ S the corresponding dense Zariski-open subspace of
S. Then analytification induces an equivalence of categories Ufét

∼= Ufét.

Note that U is normal if and only if U is normal; this follows from [BGR84, Proposition 7.3.2/8.i].

12



Proof. The essential point is to construct the functor Ufét �→ Ufét. For this, let Y → U be any
finite étale cover. Letting S

ν and Sν denote the normalizations of S and S, the map U → S factors
canonically over a dense Zariski-open immersion U → S

ν , and similarly for U . By Theorem 2.10,
Y → U extends to a cover Ỹ → S

ν . Since Ỹ → S
ν is finite, Ỹ = SpaB for B some module-finite

A
ν-algebra. Then Y = Spec B ×Sν U → U is the desired algebraization of Y → U .

3 Vanishing theorems

3.1 The reduction step
In this section we deduce Theorem 1.3 from Theorem 1.4. For clarity we focus on the vanishing
statement in the theorem; it’s easy to see that the following argument also reduces the finiteness of
the groups H

i
ét(X bX

,F ) to finiteness in the special case where F = Z/nZ is constant, and finiteness
in the latter case follows from [Ber15, Theorem 1.1.1].

Proof of Theorem 1.3. Fix a nonarchimedean field K and a coefficient ring Λ = Z/nZ as in the
theorem. In what follows, “sheaf” is shorthand for “étale sheaf of Λ-modules”. For nonnegative
integers d, i, consider the following statement.

Statement Td,i: “For all K-affinoids X of dimension ≤ d, all Zariski-constructible sheaves F on
X, and all integers j > i, we have H

j
ét(X bK

,F ) = 0.”
We are trying to prove that Td,d is true for all d ≥ 0. The idea is to argue by ascending induction

on d and descending induction on i. More precisely, it clearly suffices to assume the truth of Td−1,d−1

and then show that Td,i+1 implies Td,i for any i ≥ d; as noted in the introduction, Td,2d is true for
any d ≥ 0, which gives a starting place for the descending induction.

We break the details into several steps.
Step One. Suppose that Td−1,d−1 holds. Then for any d-dimensional affinoid X, any Zariski-

constructible sheaf F on X, and any dense Zariski-open subset j : U → X, the natural map
H

i
ét(X bK

, j!j
∗F ) → H

i
ét(X bK

,F ) is surjective for i = d and bijective for i > d.
Letting i : Z → X denote the closed complement, this is immediate by looking at the long exact

sequence

· · · → H
i−1
ét (Z bK

, i
∗
F ) → H

i
ét(X bK

, j!j
∗
F ) → H

i
ét(X bK

,F ) → H
i
ét(Z bK

, i
∗
F ) → · · ·

associated with the short exact sequence

0 → j!j
∗
F → F → i∗i

∗
F → 0

and then applying Td−1,d−1 to control the outer terms.
Step Two. For any d, i, Td,i holds if and only if it holds for all normal affinoids.
One direction is trivial. For the other direction, note that by Noether normalization for affinoids

[BGR84, Corollary 6.1.2/2], any d-dimensional affinoid X admits a finite map

τ : X → Bd
= SpaK �T1, . . . , Td� ,

and τ∗ = Rτ∗ preserves Zariski-constructibility by Proposition 2.3.
Step Three.

4 Suppose that Td−1,d−1 holds. Then for any d-dimensional normal affinoid X,
any dense Zariski-open subset j : U → X, and any locally constant constructible sheaf H on U ,

4This step was inspired by some constructions in Nori’s beautiful paper [Nor02].
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we can find a Zariski-constrictible sheaf G on X together with a surjection s : G → j!H , such that
moreover H

i
ét(X bK

,G ) = 0 for all i > d.
To prove this, suppose we are given X,U , and H as in the statement. By definition, we can find

a finite étale cover π : Y → U such that π
∗H is constant, i.e. such that there exists a surjection

Λ
n
Y → π

∗H for some n; fix such a surjection. This is adjoint to a surjection π!(Λ
n
Y ) → H ,5 which

extends by zero to a surjection s : j!π!(Λ
n
Y ) → j!H . We claim that the sheaf G = j!π!(Λ

n
Y ) has the

required properties. Zariski-constructibility is clear from the identification π! = π∗ and Proposition
2.3. For the vanishing statement, we apply Theorem 1.6 to extend Y → U to a cover π̃ : Ỹ → X

sitting in a cartesian diagram

Y

π

��

h ��
Ỹ

π̃

��
U

j �� X

where Ỹ is a normal affinoid and h is a dense Zariski-open immersion. By proper base change and
the finiteness of π̃, we get isomorphisms

G = j!π!(Λ
n
Y ) ∼= π̃!h!(Λ

n
Y ) ∼= π̃∗h!(Λ

n
Y ),

so H
i
ét(X bK

,G ) ∼= H
i
ét(Ỹ bK

, h!ΛY )
⊕n. Now, writing i : V → Ỹ for the closed complement of Y , we

get exact sequences
H

i−1
ét (V bK

,ΛV ) → H
i
ét(Ỹ bK

, h!ΛY ) → H
i
ét(Ỹ bK

,ΛỸ )

for all i. Examining this sequence for any fixed i > d, we see that the rightmost term vanishes by
Theorem 1.4, while the leftmost term vanishes by the assumption that Td−1,d−1 holds.6 Therefore
H

i
ét(Ỹ bK

, h!ΛY ) = 0 for i > d, as desired.
Step Four. Suppose that Td−1,d−1 holds. Then Td,i+1 implies Td,i for any i ≥ d.
Fix d and i ≥ d as in the statement, and assume Td,i+1 is true. Let X be a d-dimensional affinoid,

and let F be a Zariski-constructible sheaf on X. We need to show that H
i+1
ét (X bK

,F ) = 0. By
Step Two, we can assume X is normal (or even that X is the d-dimensional affinoid ball). By Step
One, it suffices to show that H

i+1
ét (X bK

, j!j
∗F ) = 0 where j : U → X is the inclusion of any dense

Zariski-open subset. Fix a choice of such a U with the property that j
∗F is locally constant. By

Step Three, we can choose a Zariski-constructible sheaf G on X and a surjection s : G → j!j
∗F such

that H
n
ét(X bK

,G ) = 0 for all n > d. By Proposition 2.4, the sheaf K = ker s is Zariski-constructible.
Now, looking at the exact sequence

H
i+1
ét (X bK

,G ) → H
i+1
ét (X bK

, j!j
∗
F ) → H

i+2
ét (X bK

,K ),

we see that the leftmost term vanishes by the construction of G , while the rightmost term vanishes
by the induction hypothesis. Therefore

H
i+1
ét (X bK

, j!j
∗
F ) = 0,

as desired.
5Surjectivity here can be checked either by a direct calculation or by “pure thought” (π! is left adjoint to π∗, and

left adjoints preserve epimorphisms).
6One really needs the induction hypothesis to control the leftmost term here, since V may not be normal.
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3.2 Constant coefficients
In this section we prove Theorem 1.4. The following technical lemma plays an important role in the
argument.

Lemma 3.1. Let K be a complete discretely valued nonarchimedean field, and let A be a reduced
K-affinoid algebra. Then A

◦ is an excellent Noetherian ring. Moreover, the strict Henselization of
any localization of A

◦ is excellent as well.

Proof. By Noether normalization for affinoids and [BGR84, Corollary 6.4.1/6], A
◦ can be realized as

a module-finite integral extension of OK �T1, . . . , Tn� with n = dimA. By a result of Valabrega (cf.
[Val75, Proposition 7] and [Val76, Theorem 9]), the convergent power series ring OK �T1, . . . , Tn� is
excellent for any complete discrete valuation ring OK . Since excellence propagates along finite type
ring maps and localizations, cf. [Sta17, Tag 07QU], we see that A

◦ and any localization thereof
is excellent. Now, by a result of Greco [Gre76, Corollary 5.6.iii], the strict Henselization of any
excellent local ring is excellent, which gives what we want.

We also need the following extremely powerful theorem of Gabber.

Theorem 3.2 (Gabber). Let B be a quasi-excellent strictly Henselian local ring, and let U ⊂ SpecB

be an affine open subscheme. Then H
i
ét(U,Z/nZ) = 0 for any i > dimB and any integer n invertible

in B.

Proof. This is a special case of Gabber’s affine Lefschetz theorem for quasi-excellent schemes, cf.
Corollaire XV.1.2.4 in [ILO14].

Finally, we recall the following strong form of the Artin-Grothendieck vanishing theorem [SGA73,
§XIV.3].

Theorem 3.3 (Artin-Grothendieck). Let X be an affine variety over a separably closed field k, and
let F be a torsion abelian sheaf on Xét. Set

δ(F ) = sup {tr.deg k(x)/k | Fx �= 0} .

Then H
i
ét(X,F ) = 0 for all i > δ(F ).

Proof of Theorem 1.4. Let X = SpaA be a K-affinoid as in the theorem. After replacing K by �Knr

and X by X
red
dKnr , we can assume that A is reduced and that K has separably closed residue field k.

By an easy induction we can also assume that n = l is prime. For notational simplicity we give the
remainder of the proof in the case where char(k) = p > 0; the equal characteristic zero case is only
easier.

By e.g. Corollary 2.4.6 in [Ber93], GalK/K sits in a short exact sequence

1 → P → GalK/K → T �
�

q �=p

Zq → 1

where P is pro-p. In particular, if L ⊂ K is any finite extension of K, then

H
i
(GalK/L,Z/lZ) �

�
Z/lZ if i = 0, 1

0 if i > 1
.
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For any such L, look at the Cartan-Leray spectral sequence

E
i,j
2 = H

i
(GalK/L, H

j
ét(X bK

,Z/lZ)) ⇒ H
i+j
ét (XL,Z/lZ).

The group ⊕j≥0H
j
ét(X bK

,Z/lZ) is finite by vanishing in degrees > 2 dimX together with [Ber15,
Theorem 1.1.1], so all the Galois actions in the E2-page are trivial for any large enough L,7 in which
case we can rewrite the spectral sequence as

E
i,j
2 = H

i
(GalK/L,Z/lZ)⊗H

j
ét(X bK

,Z/lZ) ⇒ H
i+j
ét (XL,Z/lZ).

Now if d is the largest integer such that H
d
ét(X bK

,Z/lZ) �= 0, then the E
1,d
2 term survives the spectral

sequence, so H
d+1
ét (XL,Z/lZ) �= 0. Since the residue field of L is still separably closed, it thus suffices

to prove the following statement:
(†) For any reduced affinoid X = SpaA over a complete discretely valued nonarchimedean field

K with separably closed residue field k of characteristic p > 0, we have H
i
ét(X,Z/lZ) = 0 for all

i > 1 + dimX and all primes l �= p.
Fix a uniformizer � ∈ OK . Set X = Spec A

◦ and Xs = Spec A
◦
/�, so Xs is an affine variety

over k. As in [Hub96, §3.5] or [Ber94], there is a natural map of sites λ : Xét → Xs,ét, corresponding
to the natural functor

Xs,ét → Xét

U/Xs �→ η(U)/X

given by (uniquely) deforming an étale map U → Xs to a �-adic formal scheme étale over Spf A
◦ and

then passing to rigid generic fibers. (We follow Huber’s notation in writing λ - Berkovich denotes
this map by Θ.) For any abelian étale sheaf F on X, derived pushforward along λ gives rise to the
so-called nearby cycle sheaves R

j
λ∗F on Xs,ét, which can be calculated as the sheafifications of the

presheaves U �→ H
j
ét(η(U),F ), and there is a spectral sequence

H
i
ét(Xs, R

j
λ∗F ) ⇒ H

i+j
ét (X,F ),

cf. Proposition 4.1 and Corollary 4.2.(iii) in [Ber94]. Taking F = Z/lZ, we see that to prove (†)
it’s enough to show that H

i
ét(Xs, R

j
λ∗Z/lZ) = 0 for any j ≥ 0 and any i > 1 + dimX − j. By the

strong form of the Artin-Grothendieck vanishing theorem recalled above, we’re reduced to proving
that if x ∈ Xs is any point such that

(R
j
λ∗Z/lZ)x �= 0,

then tr.deg k(x)/k ≤ 1 + dimX − j.
We check this by a direct computation. So, let x ∈ Xs be any point, and let px ⊂ A

◦ be the
associated prime ideal. Crucially, we have a “purely algebraic” description of the stalk (R

j
λ∗Z/lZ)x:

letting OX ,x denote the strict Henselization of OX ,x = (A
◦
)px as usual, then

(R
j
λ∗Z/lZ)x

∼= H
j
ét

�
SpecOX ,x[

1
� ],Z/lZ

�
. (∗)

This is a special case of [Hub96, Theorem 3.5.10], and it’s remarkable that we have a description like
this which doesn’t involve taking some completion. By Lemma 3.1, OX ,x is excellent, so Theorem 3.2

7This trick was inspired by a discussion of Poincaré dualities in an IHES lecture by Peter Scholze, cf.
https://www.youtube.com/watch?v=E3zAEqkd9cQ.
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implies that H
j
ét(U,Z/lZ) = 0 for any open affine subscheme U ⊂ SpecOX ,x and any j > dimOX ,x.

In particular, taking U = SpecOX ,x[
1
� ] and applying Huber’s formula (∗) above, we see that if j is

an integer such that (R
j
λ∗Z/lZ)x �= 0, then necessarily

j ≤ dimOX ,x = dimOX ,x = ht px,

where the first equality follows from e.g. [Sta17, Tag 06LK]. Writing R = A
◦
/� and px = px/� ⊂ R,

we then have

j + tr.deg k(x)/k ≤ ht px + tr.deg k(x)/k

= 1 + ht px + tr.deg k(x)/k

= 1 + dimRpx
+ dimR/px

≤ 1 + dimR

≤ 1 + dimX.

Here the second line follows from the fact that � ∈ px is part of a system of parameters of (A
◦
)px ,

so ht px = dimRpx
= dim(A

◦
)px − 1; the third line is immediate from the equality tr.deg k(x)/k =

dimR/px, which is a standard fact about domains of finite type over a field; the fourth line is trivial;
and the fifth line follows from the fact that R is module-finite over k[T1, . . . , Tn] with n = dimX.
But then

tr.deg k(x)/k ≤ 1 + dimX − j,

as desired.

3.3 Stein spaces
We end this section with the following slightly more general version of the vanishing theorem.

Corollary 3.4. Let X be a rigid space over a characteristic zero complete discretely valued nonar-
chimedean field K which is weakly Stein in the sense that it admts an admissible covering X =

∪n≥1Un by a nested sequence of open affinoid subsets U1 ⊂ U2 ⊂ U3 ⊂ · · · . Let F be any Zariski-
constructible sheaf of Z/nZ-modules on Xét for some n prime to the residue characteristic of K.
Then

H
i
ét(X bK

,F ) = 0

for all i > dimX.

Proof. By [Hub96, Lemma 3.9.2], we have a short exact sequence

0 → lim
1

←n
H

i−1
ét (U

n, bK
,F ) → H

i
ét(X bK

,F ) → lim
←n

H
i
ét(Un, bK

,F ) → 0.

But the groups H
j
ét(Ui, bK

,F ) are finite, so the lim
1 term vanishes, and the result now follows from

Theorem 1.3.

This argument also shows that Conjecture 1.2, for a fixed choice of C, is equivalent to the
apparently more general conjecture that the cohomology of any Zariski-constructible sheaf on any
weakly Stein space X over C vanishes in all degrees > dimX.
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4 Comparison theorems

4.1 The affinoid comparison theorem
In this section we prove Theorem 1.9. Note that when F is a constant sheaf of torsion abelian
groups, this theorem is already in Huber’s book [Hub96], and we’ll eventually reduce to this case.

Let S and S be as in the statement of the theorem. Before continuing, we note for later use
that if j : U → S is any open immersion with closed complement i : Z → S, the four functors j!, j

∗,
i∗, i

∗ and their analytifications can be canonically and functorially commuted with the appropriate
µ
∗’s in the evident sense. Indeed, for j

∗ and i
∗ this is obvious (by taking adjoints of the obvious

equivalences j∗µU∗ ∼= µS∗j
an
∗ and i∗µZ∗ ∼= µX∗i

an
∗ ), for j! it follows by taking adjoints of the

equivalence j
∗
µS∗ ∼= µU∗j

an∗ (which holds by “base change for a slice”), and for i∗ it’s a very
special case of [Hub96, Theorem 3.7.2]. Moreover, if f : Y = SpecB → S is any finite morphism
with analytification f

an
: Y = SpaB → X, then µ

∗
Xf∗ ∼= f

an
∗ µ

∗
Y (by [Hub96, Theorem 3.7.2] and

[Hub96, Proposition 2.6.4] again) and µ
∗
Y f

∗ ∼= f
an∗

µ
∗
X (by taking adjoints to the obvious equivalence

µX∗f
an
∗
∼= f∗µY ∗). We’ll use all of these compatibilities without further comment.

Proof of Theorem 1.9. First, observe that all functors involved in the statement of the theorem
commute with filtered colimits: for H

n
ét(S,−) this is standard, for H

n
ét(S,−) this follows from

[Hub96, Lemma 2.3.13], and for µ
∗
S it is trivial (because µ

∗
S is a left adjoint). Writing F as the

filtered colimit of its m-torsion subsheaves, we therefore reduce to the case where F is killed by
some integer m ≥ 1. Since S is qcqs, we can write any sheaf of Z/mZ-modules on Sét as a filtered
colimit of constructible sheaves of Z/mZ-modules, cf. [Sta17, Tag 03SA], which reduces us further
to the case where F is a constructible sheaf of Z/mZ-modules.

Next, by repeated application of [SGA73, Prop. IX.2.14(ii)], we may choose a resolution

F � [G
0 → G

1 → G
2 → · · · ]

where each sheaf G i is isomorphic to a finite direct sum of sheaves of the form π∗M , where π : S � → S
is a finite morphism and M is a finite Z/nZ-module. By Lemma 4.1, it then suffices to prove that
H

n
ét(S, π∗M) → H

n
ét(S, µ

∗
Sπ∗M) is an isomorphism for any such π and M , and any n. Using the

exactness of π∗ and π
an
∗ and their compatibility with µ-pullback, one immediately reduces further

to the case of constant sheaves, which is exactly [Hub96, Corollary 3.2.3].

In the previous argument we used the following lemma, which is less trivial than it appears. The
reader may wish to skip the proof.

Lemma 4.1. Let f : D → C be a morphism of sites, and let F • be a bounded-below complex of
abelian sheaves on C. Then there is a map of spectral sequences

E
i,j
1 = H

j
(C,F

i
) ⇒ H

i+j
(C,F

•
)

⇓
E
�i,j
1 = H

j
(D, f

−1
F

i
) ⇒ H

i+j
(D, f

−1
F

•
)

which is given on the E1-page and abutment by the canonical maps H
j
(C,F i

) → H
j
(D, f

−1F i
)

and H
j
(C,F •

) → H
j
(D, f

−1F •
), respectively.

Proof. Filter F • by the subcomplexes F
iF •

= [F i → F i+1 → · · · ]. By [Sta17, 0BKI], we can
choose a filtered complex G • of abelian sheaves on C together with a filtered quasi-isomorphism
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α : F • → G • such that (for all j) G • and gr
jG • are K-injective complexes of injective sheaves and

gr
j
α : gr

j
F

•
= F

j
[−j] → gr

j
G
•

is a quasiisomorphism. Unwinding definitions, one checks that the upper spectral sequence in
question coincides with the spectral sequence associated with the filtered complex Γ(C,G •

).
Applying [Sta17, 0BKI] again, we can choose a filtered complex H • of abelian sheaves on D

together with a filtered quasi-isomorphism β : f
−1G • → H • such that (for all j) H • and gr

jH •

are K-injective complexes of injective sheaves and gr
j
β is a quasi-isomorphism. Again, one checks

directly that the lower spectral sequence identifies with the spectral sequence associated with the
filtered complex Γ(D,H •

). By construction, we have filtered maps of filtered complexes

Γ(C,G
•
) → Γ(D, f

−1
G
•
) → Γ(D,H

•
),

where the lefthand map exists by general nonsense and the righthand map is induced by β. The
composition of these maps induces the desired map of spectral sequences.

4.2 The relative comparison theorem
In this section we prove Theorem 1.8. Fix S, S and Λ as in the theorem. In what follows we will
write X ,Y,U , etc. for schemes locally of finite type over S, and X,Y, U , etc. for the corresponding
rigid analytic spaces over S. If f : X → Y is a finite type morphism as in the theorem, then for any
F ∈ D

+
c (X ,Λ) we write comp(f, F ) for the natural base change map µ

∗
Y Rf∗F → Rf

an
∗ µ

∗
XF . For

brevity, we will say that comp(f) is an isomorphism if the map comp(f, F ) is an isomorphism
in D(Y, Λ) for every F ∈ D

+
c (X ,Λ). (In general, it is not true that the base change map µ

∗
Y Rf∗ →

Rf
an
∗ µ

∗
X is a natural isomorphism of functors.)

Before beginning the proof, we collect some preliminary observations. We will freely use the
following result, which is presumably well-known to experts.

Proposition 4.2 (Grothendieck, Gabber). Let f : X → Y be a finite type morphism between quasi-
excellent Noetherian schemes, and let Λ be a Noetherian ring killed by some positive integer invertible
on Y. Then the functor Rf∗ : D(X ,Λ) → D(Y,Λ) preserves constructibility; more precisely, it
carries D

b
c(X ,Λ) into D

b
c(Y,Λ).

Proof. Cover X by open affines Xi, 0 ≤ i ≤ n; for any 0 ≤ i1 < · · · < ip ≤ n, set Xi1<···<ip =

∩1≤j≤pXij , so each Xi1<···<ip is a separated open subscheme of X . Let fi1<···<ip : Xi1<···<ip → Y
be the evident morphism. Looking at the the Cech spectral sequence

E
p,q
1 = ⊕i1<···<ipR

q
(fi1<···<ip)∗F |Xi1<···<ip

⇒ R
p+q

f∗F,

it suffices to show that each R(fi1<···<ip)∗ sends D
b
c(Xi1<···<ip ,Λ) into D

b
c(Y,Λ). In particular, it

suffices to consider the case where X is separated. Since f is then separated, by Nagata’s com-
pactification theorem we may choose a factorization f = f ◦ j where f : X � → Y is proper and
j : X → X � is an open immersion. Combining [ILO14, Theorem XIII.1.1.1] and [ILO14, Proposition
XVII.7.6.7], we see that Rj∗ sends D

b
c(X ,Λ) into D

b
c(X �

,Λ). By [SGA73, Th. XIV.1.1], Rf∗ sends
D

b
c(X �

,Λ) into D
b
c(Y,Λ). Since Rf∗ ∼= Rf∗Rj∗, this gives the result.

Proposition 4.3. Let h : X → Y and g : Y → Z be finite type morphisms of locally finite type
S-schemes.
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i. If comp(h) and comp(g) are isomorphisms, then so is comp(g ◦ h).
ii. If comp(h) and comp(g ◦ h) are isomorphisms, then comp(g, Rh∗F ) is an isomorphism for

every F ∈ D
+
c (X ,Λ).

iii. (2-out-of-3 property) If F1 → F2 → F3 → is a distinguished triangle in D(X ,Λ) such that
two of the three maps comp(h, Fi) are isomorphisms, then so is the third.

Proof. Part i. is a special case of the composability of base change maps, cf. [Sta17, Tag 0E46]. For
ii., consider the composition

µ
∗
ZR(g ◦ h)∗F ∼= µ

∗
ZRg∗Rh∗F → Rg

an
∗ µ

∗
Y Rh∗F → Rg

an
∗ Rh

an
∗ µ

∗
XF ∼= R(g ◦ h)

an
∗ µ

∗
XF,

where the first arrow is comp(g,Rh∗F ) and the second arrow is Rg
an
∗ comp(h, F ). By the com-

posability of base change maps, this composition is the comparison map comp(g ◦ h, F ). By our
assumptions, the second arrow and the composition of both arrows are isomorphisms. We then
conclude by observing that if A

s→ B
t→ C is any pair of morphisms in any category such that t and

t ◦ s are isomorphisms, then s is an isomorphism as well.
Part iii. is an easy exercise, using the fact that the three maps comp(h, Fi) define a morphism

between the evident distinguished triangles.

Proposition 4.4. Suppose that comp(j) is an isomorphism for all open immersions j : X → Y of
locally finite type S-schemes. Then Theorem 1.8 is true.

Proof. First we show that if comp(j) is an isomorphism for all open immersions, then comp(f) is
an isomorphism for all separated maps. For this, let f : X → Y be as in Theorem 1.8, and suppose
that f is separated. We can argue locally on Y, so we can assume that Y is affine. By Nagata’s
compactification theorem we may choose a factorization f = f ◦ j where f : X � → Y is proper and
j : X → X � is an open immersion. Then comp(j) is an isomorphism by assumption, and comp(f)

is an isomorphism by Berkovich and Huber’s proof of the proper case. We then conclude by part i.
of the previous proposition.

For the general case, we can assume that Y is affine, so X is quasicompact. We now argue by
induction on the minimal number s(X ) of separated open subschemes required to cover X . Choose
an open cover X = U ∪ V where U is separated and s(V) = s(X )− 1. Note that U ∩ V is separated.
Let jU : U → X , jV : V → X , and jU∩V : U ∩ V → X be the evident open inclusions, so we get a
functorial distinguished triangle

F → RjU∗j
∗
UF ⊕RjV∗j

∗
VF → RjU∩V∗j

∗
U∩VF →

for any F ∈ D
+
c (X ,Λ). Applying Rf∗, the comparison maps comp(f,−) fit together into a morphism

µ
∗
Y Rf∗F ��

(1)

��

µ
∗
Y Rf∗RjU∗j

∗
UF ⊕ µ

∗
Y Rf∗RjV∗j

∗
VF ��

(2)

��

µ
∗
Y Rf∗RjU∩V∗j

∗
U∩VF →

(3)

��
Rf

an
∗ µ

∗
XF �� Rf

an
∗ µ

∗
XRjU∗j

∗
UF ⊕Rf

an
∗ µ

∗
XRjV∗j

∗
VF �� Rf

an
∗ µ

∗
XRjU∩V∗j

∗
U∩VF →

of distinguished triangles. For each • ∈ {U ,V,U ∩ V}, the maps comp(j•) are isomorphisms by
assumption; by induction on s, the maps comp(f ◦ j•) are isomorphisms as well. Applying part
ii. of the previous proposition with g = f and h = j•, we see that the maps (2) and (3) are
both isomorphisms. By the 2-out-of-3 property, the morphism (1) is thererfore an isomorphism, as
desired.
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Proposition 4.5. Suppose that comp(h, M) is an isomorphism for any open immersion h : U → V
of locally finite type S-schemes and any constant constructible sheaf of Λ-modules M on U . Then
Theorem 1.8 is true.

Proof. By the previous proposition, it suffices to deduce under these assumptions that comp(j, F ) is
an isomorphism for any open immersion j : X → Y and any F ∈ D

+
c (X ,Λ). We can clearly assume

that Y is affine and that j has dense image. We can also assume that F = F is a constructible
sheaf (placed in degree zero). As in the proof of Theorem 1.9, we may choose an isomorphism

F � [G
0 → G

1 → G
2 → · · · ]

where each sheaf G i is isomorphic to a finite direct sum of sheaves of the form π∗M , where π : U → X
is a finite morphism and M is a constant constructible sheaf of Λ-modules on U . By an easy variant of
the spectral sequence argument used in the proof of Theorem 1.9, it suffices to prove that comp(j,G i

)

is an isomorphism for all i. In particular, it suffices to prove that comp(j, π∗M) is an isomorphism
for any finite morphism π : U → X and any constant constructible sheaf M as above.

Fix such a π and M . By Zariski’s main theorem, we can choose a commutative diagram

U h ��

π

��

V
τ

��
X

j �� Y

where h is an open immersion and τ is finite. In what follows we freely use the fact that π∗ = Rπ∗
and τ = Rτ∗, and likewise for π

an and τ
an; we also freely use the fact that comp(π) is an isomorphism

for any finite morphism π. Consider the sequence of canonical isomorphisms

µ
∗
Y Rj∗π∗M ∼= µ

∗
Y R(j ◦ π)∗M

∼= µ
∗
Y R(τ ◦ h)∗M

∼= µ
∗
Y τ∗Rh∗M

∼= τ
an
∗ µ

∗
V Rh∗M

(∗)∼= τ
an
∗ Rh

an
∗ µ

∗
UM

∼= Rj
an
∗ π

an
∗ µ

∗
UM

∼= Rj
an
∗ µ

∗
Xπ∗M,

where the starred isomorphism is the map τ
an
∗ comp(h, M). One checks directly that the composition

of these maps coincides with comp(j, π∗M), so the latter is an isomorphism, as desired.

Proposition 4.6. Suppose that comp(h, M) is an isomorphism for any open immersion h : X → Y
of regular finite type S-schemes and any constant constructible sheaf M of Λ-modules. Then Theorem
1.8 is true.

Proof. By the previous proposition, it suffices to show that the hypothesis of the proposition implies
that comp(j, F ) is an isomorphism for any open immersion j : X → Y of finite type S-schemes and
any constant constructible sheaf M on X .

Fix such a choice of j and M . We can clearly assume that Y is affine. By the topological
invariant of the étale site, we can also assume that Y and X are reduced. Choose a dense open
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regular subscheme g : U → X with closed complement i : Z → X , so we get a distinguished triangle

i∗i
!
M → M → Rg∗g

∗
M → .

By induction on dim supp, we can assume that comp(j, i∗i
!
M) is an isomorphism. By the 2-out-of-3

property, it now suffices to prove that comp(j, Rg∗g
∗
M) is an isomorphism. By another application

of Proposition 4.3.ii, we observe that the latter map is an isomorphism if both comp(g, g
∗
M) and

comp(j ◦ g, g
∗
M) and are isomorphisms. In particular, we’re reduced to showing that comp(h, M)

is an isomorphism for any open immersion h : X → Y of reduced finite type S-schemes with X
regular.

Since Y is regular, applying the results of [Tem17] we can choose a commutative diagram

Ỹ
f

��
X h ��

h̃

����������
Y

where h̃ is a dense open embedding of regular finite type S-schemes and f is a proper birational mor-
phism. In particular, comp(f) is an isomorphism. By the hypotheses of the proposition, comp(h̃, M)

is an isomorphism as well. Arguing as in the proof of Proposition 4.3.ii, one deduces that comp(h, M)

is an isomorphism.

Proposition 4.7. Let S, S and Λ be as in the statement of Theorem 1.8. Then for any open
immersion h : X → Y of regular finite type S-schemes and any constant constructible sheaf of
Λ-modules M , the map comp(h, M) is an isomorphism.

Proof. This follows exactly as in the final stages of the proof of [SGA73, Th. XVI.4.1], with the
appeal to results in [SGA73, §XVI.3] replaced by Huber’s cohomological purity theorem [Hub96,
Theorem 3.9.1]

Putting together the previous two propositions, Theorem 1.8 follows.

4.3 Applications
Proof of Theorem 1.10. For the first part of i., we compute that

RΓ(X , F )

(1)∼= RΓ(S, Rf∗F )

(2)∼= RΓ(S, µ
∗
SRf∗F )

(3)∼= RΓ(S, Rf
an
∗ µ

∗
XF )

(4)∼= RΓ(X,µ
∗
XF )

where (1) and (4) are the evident Leray isomorphisms, (2) follows from Theorem 1.9, and (3) follows
from Theorem 1.8. For the second part of i., it suffices to assume that F = F [0] is a sheaf. In this
case, we need to prove that F

∼→ µX∗µ
∗
XF and that R

i
µX∗µ

∗
XF = 0 for all i ≥ 1. By definition,

R
i
µX∗µ

∗
XF is the sheafification of the presheaf sending any finite type S-scheme U with an étale

map g : U → X to H
i
ét(U, g

an∗
µ
∗
XF ), where of course U = Uan is the analytification of U . But then

H
i
ét(U, g

an∗
µ
∗
XF ) ∼= H

i
ét(U, µ

∗
Ug

∗
F ) ∼= H

i
ét(U , g

∗
F ),
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where the second isomorphism follows from the first part of i., so the result follows from the locality
of cohomology (cf. [Sta17, Tag 01FW]).

For ii., note that

HomD(X,Λ)(µ
∗
XG, µ

∗
XF ) ∼= HomD(X ,Λ)(G, RµX∗µ

∗
XF )

∼= HomD(X ,Λ)(G, F ),

where the first isomorphism follows from the adjointness of µ
∗
X and RµX∗, and the second isomor-

phism follows from part i.

Next, we prove the structure theorem.

Proof of Theorem 1.7. Full faithfulness is immediate from Theorem 1.10.ii together with the natural
identification HomA(M, N) = HomD(A)(M, N), which holds for any abelian category A.

For essential surjectivity, we argue as follows. By the topological invariance of étale sites, we
can assume that A is reduced. Fix F ∈ Shzc(S,Λ). Pick a dense Zariski-open subset j : U → S

such that U is normal and j
∗F is locally constant, and let i : Z → S be the inclusion of the closed

complement. Let j
alg

: U → S and i
alg

: Z → S be the associated open and closed subschemes
of S. By induction on dim suppF , we can assume that i∗i

∗F � µ
∗
SG for some constructible sheaf

G. By Corollary 2.16, analytification induces an equivalence of categories Ufét
∼= Ufét. Since (on

individual connected components of U) j
∗F corresponds to a representation of π1(U, x) ∼= π1(U , x),

we immediately see that j
∗F � µ

∗
UF � for some locally constant constructible sheaf F � on U , so then

j!j
∗
F � j!µ

∗
UF � ∼= µ

∗
Sj

alg
! F � = µ

∗
SF ,

where we’ve set F = j
alg
! F �. Thus F sits in a short exact sequence

0 → µ
∗
SF → F → µ

∗
SG → 0.

To conclude, recall that for any abelian category A, there is a canonical identification Ext
i
A(B,A) =

HomD(A)(B,A[i]) for any objects A, B in A, cf. [Sta17, Tag 06XP]. Combining this observation
with Theorem 1.10.ii., we conclude that µ

∗
S induces a bijection

Ext
1
Sh(S,Λ)(G,F) → Ext

1
Sh(S,Λ)(µ

∗
SG, µ

∗
SF)

on Yoneda Ext groups. Therefore F � µ
∗
SH for some constructible sheaf H on S, as desired.

Finally, we prove Theorem 1.11.

Proof of Theorem 1.11. For part i., let j
alg

: U → S be the evident open immersion with analytifi-
cation j. By Theorem 1.7, we can write F � µ

∗
UF for some F ∈ Shc(U ,Λ). (Precisely, Theorem

1.7 produces a sheaf G ∈ Shc(S,Λ) with j!F � µ
∗
SG; we then take F = j

alg∗G.) By Proposition 4.2,
Rj

alg
∗ F is constructible, so

Rj∗F ∼= Rj∗µ
∗
UF ∼= µ

∗
SRj

alg
∗ F

is Zariski-constructible by Theorem 1.8.
For part ii., the spectral sequence

E
2
p,q = ⊕i+j=qTor

Λ
p (H

−i
(F ),H

−j
(G )) ⇒ H

−p−q
(F ⊗L

Λ G )
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shows that any given cohomology sheaf H n
(F ⊗L

Λ G ) is unchanged if we replace F by τ
≥−nF for

some large n � 0. This reduces us to the case where F is bounded, and then (by an easy induction
using the two-out-of-three property) to the case where F is a sheaf. Repeating this argument, we
can also assume that G is a sheaf. Going to a stratification S =

�
Si such that F and G are locally

constant on each stratum, we reduce to the case where both sheaves are locally constant, which is
easy.

For part iii., note that H n
(DSF ) is the sheafification of the presheaf sending any quasicompact

separated étale map j : U → S to the module

H
n

(RH omΛ(RΓc(U, j
∗
F ),Λ)) .

Our assumptions on K and Λ guarantee that RΓc(U,−) sends D
[a,b]

(U,Λ) into D
[a,b+N ]

(Λ) for some
N depending only on the pair (S, Λ), and that RH omΛ(−,Λ) sends D

[a,b]
(Λ) into D

[−b,−a]
(Λ). This

shows that DS exchanges the boundedness conditions as claimed, and that any given cohomology
sheaf H n

(DSF ) depends only on the truncation τ
≤b

τ
≥aF for some large a � 0 � b. For the

Zariski-constructibility of DSF , we can therefore assume that F is bounded, and then that F is
a sheaf. Pick a smooth dense Zariski-open j : U → S with closed (affinoid) complement i : Z → X,
so j

∗
ωS = ωU is locally constant up to a shift and twist. Shrinking U further, if necessary, we can

also assume that j
∗F is locally constant, so

j
∗DSF ∼= DU j

∗
F = RH omU (j

∗
F , ωU )

is locally constant constructible, up to a shift and twist. Dualizing the distinguished triangle

j!j
∗
F → F → i∗i

∗
F →

and using the habitual isomorphisms DSj!
∼= Rj∗DU and DSi∗i

∗ ∼= i∗DZi
∗, we get a distinguished

triangle
i∗DZi

∗
F → DSF → Rj∗DU j

∗
F → .

By induction on dimS, the first term in this triangle is Zariski-constructible. Since DU j
∗F is

locally constant, the third term is Zariski-constructible by part i. The result now follows from the
two-out-of-three property. Finally, for the reflexivity of F , we can again assume that F is a sheaf,
in which case the desired result is [Han17, Theorem B.1.2].

For part iv., note that we have isomorphisms

RH omS(F ,G ) ∼= RH omS(F ,DSDSG )

∼= DS

�
F ⊗L

Λ DSG
�
,

where the first comes from the reflexivity of G proved in iii., and the second is an easy exercise in
tensor-hom adjunction. The result now follows from parts ii. and iii.

For part v., the habitual isomorphism Rf
!DS

∼= DT f
∗ together with the reflexivity of F give

isomorphisms
Rf

!
F ∼= Rf

!DSDSF ∼= DT f
∗DSF ,

so the result now follows from part iii.
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